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Game plan/outline

• Problem setup:
• smooth convex optimization
• Fixed-Step First-Order Methods (FSFOMs)

• General fact about FSFOMs: existence of “shadow” iterate
• Recover Nesterov’s Fast Gradient Method (FGM) and

the Optimized Gradient Method (OGM) as “greedy”
algorithms

• Develop Subgame Perfect Gradient Method (SPGM)
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Setup
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Smooth Convex Minimization

• Want algorithms for

min
x∈Rd

f(x)

• f is convex
• f is 1-smooth: ∥∇f(x)−∇f(y)∥ ≤ ∥x− y∥ ∀x, y
• f has a minimizer x⋆ with minimum value f⋆

• F is the set of instances

• Learn information about f ∈ F via first-order queries

x 7→ (f(x), ∇f(x))
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Fixed-step first-order methods (FSFOM)

• N -step fixed-step first-order method (FSFOM)

• Strictly lower triangular matrix H ∈ R[0,N ]×[0,N ]

Algorithm. FSFOM(H)

• Initialize x0 = 0
• For n = 1, . . . , N , iterate

xn := xn−1 −
n−1∑
i=0

Hn,i∇f(xi)

• Output xN

• Abbreviate fn = f(xn) and gn = ∇f(xn)

• Throughout talk, assume d ≥ N + 2
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Performance

• Worst-case performance of H:
Define r(H) to be largest value of r s.t.

fN − f⋆ ≤
1

2r
∥x0 − x⋆∥2 ∀f ∈ F

• Equivalently r(H) := min
f∈F

1
2 ∥x0 − x⋆∥2

fN − f⋆

• The algorithm design problem:

max
H

r(H)
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Classic algorithms

• N steps of gradient descent, xn = xn−1 − gn−1:

H =


0

1 0

1 0
. . .

. . .

1 0

 and r(H) = 2N + 1

• [Nesterov 05]: N steps of Fast Gradient Method (FGM):

H =


0

1 0

0 1.28175 0

0 0.122293 1.43404 0

0 0.0649454 0.230504 1.53106 0

 and r(H) ≈ N2

4
.
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The “Shadow Iterate” and Acceleration
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The “Shadow Iterate”

Theorem. [Grimmer Shu Wang 2024c]

Let H be any* N -step FSFOM. Let r = r(H) so that

fN − f⋆ ≤ 1

2r
∥x0 − x⋆∥2 ∀f ∈ F

We can construct a vector v ∈ R[0,N ] so that

fN − f⋆ +
1

2r

∥∥∥∥∥x0 −
N∑
i=0

vigi − x⋆

∥∥∥∥∥
2

≤ 1

2r
∥x0 − x⋆∥2 ∀f ∈ F

• zN+1 := x0 −
∑N

i=0 vigi is the shadow iterate for H
• For any H, f ∈ F , either

f(xN )− f⋆ outperforms worst-case or zn+1 ≈ x⋆
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Example

• Let N = 0 and H = [0]

• This “algorithm” outputs x0 = 0 on any f ∈ F
• By 1-smoothness

f0 − f⋆ ≤
1

2
∥x0 − x⋆∥2

• Setting v = [1]

f0 − f⋆ +
1

2
∥x0 − g0 − x⋆∥2 ≤ 1

2
∥x0 − x⋆∥2
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Recovering Nesterov’s FGM I

• Idea: Let’s inductively derive a good FSFOM
• At iteration n, have xn−1, rn−1

fn−1 − f⋆ ≤ 1

2rn−1
∥x0 − x⋆∥2

• For free, also have zn so that

fn−1 − f⋆ +
1

2rn−1
∥zn − x⋆∥2 ≤ 1

2rn−1
∥x0 − x⋆∥2

• Hedge between: either fn−1 − f⋆ already small or zn ≈ x⋆
• Let αn ∈ (0, 1) and set

xn = αn

(
xn−1 − gn−1

)
+ (1− αn) zn
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Recovering Nesterov’s FGM II

• Goal: Pick (rn, αn) so that

f(xn)− f⋆ ≤
1

2rn
∥x0 − x⋆∥2

• Ingredients: rn−1, xn−1, zn, and f ∈ F , x⋆ satisfy

f(xn−1)− f⋆ +
1

2rn−1
∥zn − x⋆∥2 ≤

1

2rn−1
∥x0 − x⋆∥2

• FGM: Pick αn to maximize worst-case rn
for all f ∈ F , x⋆, xn−1, zn satisfying inductive hypothesis

• Explicit formula for (rn, αn) in terms of rn−1
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Recovering Nesterov’s FGM III

Algorithm. Fast Gradient Method [Nesterov 05]

• Initialize x0 = 0, z1 = x0 − g0, r0 = 1

f0 − f⋆ +
1

2r0
∥z1 − x⋆∥2 ≤ 1

2r0
∥x0 − x⋆∥2

• For n = 1, . . . , N , set
xn = αn(xn−1 − gn−1) + (1− αn)zn

zn+1 = inductively maintained

where αn greedily maximizes rn in

fn − f⋆ +
1

2rn
∥zn+1 − x⋆∥2 ≤ 1

2rn
∥x0 − x⋆∥2

• Output xN with performance rFGM
N ≈ N2

4
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Recovering OGM I

• In FGM, each step starts with hypothesis

fn−1 − f⋆ is small or ∥zn − x⋆∥2 is small,

but proof actually uses the fact that

fn−1 −
1

2
∥gn−1∥2 − f⋆ is small or ∥zn − x⋆∥2 is small

• Optimized Gradient Method (OGM):
Suppose xn−1, rn−1, zn satisfy

fn−1 −
1

2
∥gn−1∥2 − f⋆ +

1

rn−1
∥zn − x⋆∥2 ≤ 1

rn−1
∥x0 − x⋆∥2

• Pick xn = αn(xn−1 − gn−1) + (1− αn)zn

[Drori Teboulle 12] [Kim Fessler 16]
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Recovering OGM II

• Goal: Pick (rn, αn) so that

f(xn)−
1

2
∥∇f(xn)∥2 − f⋆ ≤ 1

2rn
∥x0 − x⋆∥2

• Ingredients: rn−1, xn−1, zn, and f ∈ F , x⋆ satisfy

f(xn−1)−
1

2
∥∇f(xn−1)∥2 − f⋆ +

1

2rn−1
∥zn − x⋆∥2

≤ 1

2rn−1
∥x0 − x⋆∥2

• OGM: Pick αn to maximize worst-case rn
for all f ∈ F , x⋆, xn−1, zn satisfying inductive hypothesis

• Explicit formula for (rn, αn) in terms of rn−1
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Recovering OGM III

Algorithm. Optimized Gradient Method

• Initialize x0 = 0, z1 = x0 − 2g0, r0 = 2

f0 −
1

2
∥g0∥2 − f⋆ +

1

2r0
∥z1 − x⋆∥2 ≤ 1

2r0
∥x0 − x⋆∥2

• For n = 1, . . . , N − 1, set
xn = αn(xn−1 − gn−1) + (1− αn)zn

zn+1 = inductively maintained

where αn greedily maximizes rn in

fn − 1

2
∥gn∥2 − f⋆ +

1

2rn
∥zn+1 − x⋆∥2 ≤ 1

2rn
∥xn − x⋆∥2

• Slight modification for iteration N ...
• Output xN with performance rOGM

N ≈ N2

2
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Optimality of OGM

Theorem. [Drori 2017]
The N -step Optimized Gradient Method (OGM) has rate

rOGM
N ≈ N2

2
≈ 2rFGM

N

Furthermore, N -step OGM solves

max
H

r(H) = max
H

min
f∈F

1
2 ∥x0 − x⋆∥2

fN − f⋆
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Subgame Perfect Gradient Method
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Can we do better than OGM?

• OGM is optimal in a uniform sense

fN − f⋆ ≤ 1

2 · rOGM
N

∥x0 − x⋆∥2 ∀f ∈ F

• Can perform at worst-case rate even on “easy instances”

• Example: f(x) = 1
2 ∥x− x⋆∥2 is a worst-case function!

“Correct behavior” should terminate after two steps
• Goal: “Optimally tighten” performance of OGM
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The Convex Minimization Game I

• Model convex min. as sequential zero-sum game:
• Rounds = N , Alice = Algorithm, Bob = “adversary”

• Alice plays x0 = 0 and Bob plays (f0, g0)
• At round n = 1, . . . , N

Alice plays xn ∈ x0 + span({g0, . . . , gn−1})

Bob plays (fn, gn)

• Bob plays (x⋆, f⋆, g⋆ = 0), f ∈ F agreeing with history

• Alice’s payoff is
1
2 ∥x0 − x⋆∥2

fN − f⋆

Alex L. Wang Some Accelerated Methods for Smooth Convex Minimization 20 / 27



The Convex Minimization Game II

• The OGM strategy is a Nash Equilibrium strategy
• Alice’s payoff ≥ rOGM

N
• If Bob plays optimally, then no strategy for Alice can

guarantee a payoff > rOGM
N

• Subgame perfect notion captures idea of
“optimally exploiting suboptimal play by adversary”

• OGM is not a subgame perfect Nash Equilibrium strategy
• Consider f(x) = 1

2 ∥x− x⋆∥2

Alice increases payoff rOGM
N → ∞ by deviating at iteration 2

• The “dynamic” extension of OGM is Subgame Perfect!
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SPGM Update

• OGM: Given rn−1, set
xn = αn(xn−1 − gn−1) + (1− αn)zn to maximize rn s.t.
∀f ∈ F , x⋆, xn−1, zn :

fn−1 −
1

2
∥gn−1∥2 − f⋆ +

1

2rn−1
∥zn − x⋆∥2 ≤ 1

2rn−1
∥x0 − x⋆∥2

=⇒ fn − 1

2
∥gn∥2 − f⋆ ≤ 1

2rn
∥x0 − x⋆∥2

• SPGM: Given FO-history, set
xn ∈ x0 + span({g0, g1, . . . , gn−1}) to maximize rn s.t.

∀f ∈ F , x⋆ :

f(xi) = fi, ∇f(xi) = gi, ∀i ∈ [0, n− 1]

=⇒ fn − 1

2
∥gn∥2 − f⋆ ≤ 1

2rn
∥x0 − x⋆∥2

Can be reparameterized as a convex problem!
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SPGM Algorithm

Algorithm. SPGM [Grimmer Shu Wang 2024b]

• Initialize x0 = 0, z1 = x0 − 2g0, r0 = 2

f0 −
1

2
∥g0∥2 − f⋆ +

1

2r0
∥z1 − x⋆∥2 ≤ 1

2r0
∥x0 − x⋆∥2

• For n = 1, . . . , N − 1, set
xn, rn, zn+1 = “output” of some convex minimization problem

where xn, zn+1 greedily maximizes rn in:

fn − 1

2
∥gn∥2 − f⋆ +

1

2rn
∥zn+1 − x⋆∥2 ≤ 1

2rn
∥xn − x⋆∥2

• Slight modification for iteration N ...
• Output xN
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SPGM Guarantees

Theorem. [Grimmer Shu Wang 24b]

The SPGM is subgame perfect:
Suppose Alice plays according to SPGM. After iteration n,
Alice can guarantee a payoff of at least

rN ({(x0, f0, g0), (x1, f1, g1), . . . , (xn, fn, gn)}) ≥ rOGM
N .

If Bob plays optimally in this subgame, then no strategy for
Alice can guarantee a strictly larger payoff.
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Limited-memory SPGM

• SPGM overhead:
• storage: {(xn, fn, gn)}
• solve convex problem in 2n variables optimally

• Limited-memory variant k-SPGM:
• store k tuples {(xn, fn, gn, rn, zn+1)}
• solve convex problem in 2k variables

• If optimal, then this is subgame perfect for the limited
memory version of the minimization game

• Correctness depends only on feasibility (there is a known
feasible point corresponding to the OGM update)
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Summary/pointers
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Summary/pointers

• Existence of “Shadow Iterates” See: Blog post on my website
• Recovered: See: [d’Aspremont Scieur Taylor 21]

• Nesterov’s Fast Gradient Method See: [Nesterov 05]
• Optimized Gradient Method See: [Drori Teboulle 12] [Kim Fessler 16] [Drori 17]

• New: Subgame Perfect Gradient Method and limited-memory k-SPGM
See: [Grimmer Shu Wang 2024b]

• Other recent work:
• Acceleration without momentum “silver stepsize schedule”

(possible if shadow iterate zn+1 ∈ xn + Rgn)
See: [Altschuler Parrilo 2023a,b] [Grimmer Shu Wang 2024a,c] [Zhang Jiang 2024]
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