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Game plan/outline

e Problem setup:

® smooth convex optimization
* Fixed-Step First-Order Methods (FSFOMSs)

e General fact about FSFOMs: existence of “shadow” iterate

e Recover Nesterov’s Fast Gradient Method (FGM) and
the Optimized Gradient Method (OGM) as “greedy”
algorithms

¢ Develop Subgame Perfect Gradient Method (SPGM)
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Setup
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Smooth Convex Minimization

e Want algorithms for

min f(x)

z€R4

® fis convex
* fisl-smooth: [Vf(z) = V()| < llz -yl Va,y
® f has a minimizer x, with minimum value f,

e F is the set of instances

¢ Learn information about f € F via first-order queries

z = (f(x), V()

Alex L. Wang Some Accelerated Methods for Smooth Convex Minimization 4/27



Fixed-step first-order methods (FSFOM)

e N-step fixed-step first-order method (FSFOM)
e Strictly lower triangular matrix H € RI0-Nx[0:N]

Algorithm. FSFOM(H)

¢ |nitialize zo = 0
® Forn=1,...,N, iterate

n—1

Tp = Tp—1 — Z Hn,zvf(xz)
i=0
e Qutput z

e Abbreviate f,, = f(z,,) and g, = Vf(zy)
e Throughout talk, assume d > N + 2

Alex L. Wang Some Accelerated Methods for Smooth Convex Minimization 5/27



Performance

e Worst-case performance of H:
Define r(H) to be largest value of r s.t.

1
fn—fesglmo—all  VfeF

e Equivalently  7(H) := min M
T jeF fN—fx

¢ The algorithm design problem:
max r(H)
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Classic algorithms

e N steps of gradient descent, z,, =z, 1 — gn_1:

0
10

H= 1 0 and r(H)=2N +1
1 0
® [Nesterov 05]: N steps of Fast Gradient Method (FGM):
0
1 0
0 1.28175 0 and r(H)=~

0 0.122293 1.43404 0
0 0.0649454 0.230504 1.53106 O
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The “Shadow lterate” and Acceleration
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The “Shadow lterate”

Theorem. [Grimmer Shu Wang 2024c]
Let H be any* N-step FSFOM. Let = »(H) so that

1
fn=fiS o llwo—ai|® VieF

We can construct a vector v € R0V 5o that

N 2
Zo — E Vigi — Tx
i=0

1
< o lzo — 2.[|* VfeF
T

1
fN_f*‘l' 2
T

® Zyi1 =120 — Y i, vigi is the shadow iterate for H
e Forany H, f € F, either

f(zn) — f. outperforms worst-case or Znil R Ty
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Example

Let N =0and H = [0]
This “algorithm” outputs zg = 0onany f € F
By 1-smoothness

fo—fe<s H-%’o —

Setting v = [1]

1
fo—fo+ *Hl‘o—go—w*H ino—x*HQ
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Recovering Nesterov’'s FGM |

Idea: Let’s inductively derive a good FSFOM
At iteration n, have x,_1, r,—1

lzo — 2.|”

fn—l 7f* <

 2rn,_1

For free, also have z,, so that

1 1
Famt = fot g llzn =@l < 5
T

2
— 7o - |

Hedge between: either f,_1 — fi already small or z,, ~ x,
Let o, € (0,1) and set

T = an<xn—1 — 0gn-—1 ) + (1 _an) Zn
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Recovering Nesterov’'s FGM Il

Goal: Pick (r,, a;,) so that

1
Fle) = £ < 5= lleo — P

Ingredients: r,, 1,2, 1,2,, and f € F, z, satisfy

f(xn—l) - f* +

l2n —a* < lzo — .|I”

2rp_1 2rp—1

FGM: Pick «,, to maximize worst-case r,
forall f € F, x,,xn—1, 2, Satisfying inductive hypothesis
Explicit formula for (r,,, a,) in terms of r,,_;
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Recovering Nesterov’s FGM lll

Algorithm. Fast Gradient Method [Nesterov 05]

e Initialize x9 =0, 21 = g — go, ro = 1
1 1
fo= fut g llor =2l < 5= flao —
e Forn=1,...,N, set

Tp = an(xnfl - gnfl) F (1 - an)zn
zn+1 = inductively maintained

where «,, greedily maximizes T iN

fo=fet IIZn+1 2| < 5— llzo — @.|?

= 21,

* Output 2 with performance r{°M ~ T

Alex L. Wang Some Accelerated Methods for Smooth Convex Minimization 13/27



Recovering OGM |

¢ In FGM, each step starts with hypothesis
fa1 — froissmall or ||z, — a,|* is small,
but proof actually uses the fact that

1 . .
fao1= 5 lgn_1l®> — f.issmall or |z, — | is small

e Optimized Gradient Method (OGM):
Suppose x5, 1,71, 2, Satisfy

1

1
2 — .|| <
r

lzo — 2|
Tn—1 n—1

1
Jn—1— §||gn—l||2 — fut

e Pick z,, = apn(n-1 — gn—1) + (1 — an)zn

[Drori Teboulle 12] [Kim Fessler 16]
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Recovering OGM Il

Goal: Pick (r,, a;,) so that

fon) = 5 IVF@DIP - 1. < 5 lloo = .

Ingredients: r,,_1,x,_1,2,, and f € F, x, satisfy
1
flan—) — 5\|Vf(chH)II2 —fut

2 — @I

27ﬁn—1

<
27"71,1

lzo — .||

OGM: Pick «,, to maximize worst-case r,,
forall f € F, x,,xn_1, 2, Satisfying inductive hypothesis
Explicit formula for (r,, ay,) in terms of r,_;
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Recovering OGM Il

Algorithm. Optimized Gradient Method

e |nitialize x9 = 0, 21 = 29 — 290, 70 = 2
1 1
o——||90|| —fit ||Zl—37*|| <2—||930—9U*||
e Forn=1,...,N —1, set

Tp = an(xn—l - gn—l) + (]— - an)zn
zn+1 = inductively maintained

where «,, greedily maximizes Ty N

1 ) 1
o= 5 1al = £+ 5 msa = 2l < 5 13 = 2.l

¢ Slight modification for iteration N ..
* Output z with performance rOG'V' ~
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Optimality of OGM

Theorem. [Drori 2017]
The N-step Optimized Gradient Method (OGM) has rate

N2
T%GM ~ 7 = 27"1':VGM

Furthermore, N-step OGM solves

1 2
s l|lzg —

max r(H) = max min M
H H fer [y — [«
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Subgame Perfect Gradient Method
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Can we do better than OGM?

OGM is optimal in a uniform sense

1
In= IS oo leo—al® VS EF
./rN

Can perform at worst-case rate even on “easy instances”

Example: f(z) = 1|z — z,|* is a worst-case function!
“Correct behavior” should terminate after two steps

Goal: “Optimally tighten” performance of OGM
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The Convex Minimization Game |

* Model convex min. as sequential zero-sum game:

e Rounds = N, Alice = Algorithm, Bob = “adversary”

e Alice plays zy = 0 and Bob plays (fo, go)
e Atroundn=1,...,N

Alice plays ., € zo + span({go,-- -, Gn-1})
Bob plays (fn,gn)
® Bob plays (zs, fx, g« =0), f € F agreeing with history

2
3 llmo — .||

e Alice’s payoff is
p y fN _f*
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The Convex Minimization Game I

e The OGM strategy is a Nash Equilibrium strategy
e Alice’s payoff > QM
e |f Bob plays optimally, then no strategy for Alice can
guarantee a payoff > QM

e Subgame perfect notion captures idea of
“optimally exploiting suboptimal play by adversary”
e OGM is not a subgame perfect Nash Equilibrium strategy

e Consider f(z) = & & — o’

Alice increases payoff r{EM — oo by deviating at iteration 2
¢ The “dynamic” extension of OGM is Subgame Perfect!
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SPGM Update

e OGM: Given r,,_1, set
Ty = Qn(Tn—1 — gn-1) + (1 — ay) 2, t0o Maximize r,, s.t.

Vf € F, Tu,Tn-1,2n:

Hzn - -T*HQ <

1
Jn—1 —§||9n—1||2—f*+ - 2o — @ ||

21y

= fn—3 Hgnll —fe< 5 2 on—w*\l

e SPGM: Given FO-history, set
xn € xo + span({go, 91, - - -, gn—1}) t0 Maximize r,, s.t.

VfeF, o
flz:) = fi, Vf(x:) = g, Vi € [0,n — 1]
1, o 1 ,
—_ — " < P _ .
= Jn 2 llgn ] fx < o lzo — z«||

Can be reparameterized as a convex problem!
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SPGM Algorithm

Algorithm. SPGM [Grimmer Shu Wang 2024b]

e Initialize xg = 0, 21 = x¢ — 290, 10 = 2
1 1 1
Jo— B lgoll” = fe + T 21 — @) < s 2o — 24|

e Forn=1,...,N —1, set
Tn, Tn, 2n+1 = output” of some convex minimization problem

where x,,, 2,11 greedily maximizes r, in:

1 1 1
fn— 3 ||gn||2 -t Z lzn+1 — 1‘*||2 < E l|lzr — x*||2

¢ Slight modification for iteration NV ...
e Qutput zn
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SPGM Guarantees

Theorem. [Grimmer Shu Wang 24Db]

The SPGM is subgame perfect:
Suppose Alice plays according to SPGM. After iteration n,
Alice can guarantee a payoff of at least

TN({(I& anQO)a (mlv flagl)a 9009 (ajn? fnagn)}) > T](\)[GM-

If Bob plays optimally in this subgame, then no strategy for
Alice can guarantee a strictly larger payoff.
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Limited-memory SPGM

e SPGM overhead:

e storage: {(zn, frn,9n)}

® solve convex problem in 2n variables optimally
e Limited-memory variant k-SPGM:

e store k tuples {(zn, fnsGn, "ns Zn+1) }

® solve convex problem in 2k variables

® [f optimal, then this is subgame perfect for the limited
memory version of the minimization game

® Correctness depends only on feasibility (there is a known
feasible point corresponding to the OGM update)
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Summary/pointers
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Summary/pointers

e Existence of “Shadow lterates” See: Blog post on my website
e Recovered: See: [d’Aspremont Scieur Taylor 21]
® Nesterov’s Fast Gradient Method See: [Nesterov 05]
® Optimized Gradient Method See: [Drori Teboulle 12] [Kim Fessler 16] [Drori 17]
¢ New: Subgame Perfect Gradient Method and limited-memory k-SPGM
See: [Grimmer Shu Wang 2024b]
e Other recent work:

® Acceleration without momentum “silver stepsize schedule”
(possible if shadow iterate 2,11 € =, + Rgy,)
See: [Altschuler Parrilo 2023a,b] [Grimmer Shu Wang 2024a,c] [Zhang Jiang 2024]
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