

Some Accelerated Methods for Smooth Convex Minimization

Alex L. Wang, Daniels School of Business, Purdue University

Based on joint work with: Benjamin Grimmer, Kevin Shu

Mitchell E. Daniels, Jr.
School of Business

- Problem setup:
 - smooth convex optimization
 - Fixed-Step First-Order Methods (FSFOMs)
- General fact about FSFOMs: existence of “shadow” iterate
- Recover Nesterov’s **Fast Gradient Method** (FGM) and the **Optimized Gradient Method** (OGM) as “greedy” algorithms
- Develop **Subgame Perfect Gradient Method** (SPGM)

Setup

- Want algorithms for

$$\min_{x \in \mathbb{R}^d} f(x)$$

- f is convex
- f is 1-smooth: $\|\nabla f(x) - \nabla f(y)\| \leq \|x - y\| \quad \forall x, y$
- f has a minimizer x_* with minimum value f_*
- \mathcal{F} is the set of instances
- Learn information about $f \in \mathcal{F}$ via first-order queries

$$x \mapsto (f(x), \nabla f(x))$$

- N -step fixed-step first-order method (FSFOM)
- Strictly lower triangular matrix $\mathbf{H} \in \mathbb{R}^{[0,N] \times [0,N]}$

Algorithm. FSFOM(\mathbf{H})

- Initialize $x_0 = 0$
- For $n = 1, \dots, N$, iterate

$$x_n := x_{n-1} - \sum_{i=0}^{n-1} \mathbf{H}_{n,i} \nabla f(x_i)$$

- Output x_N

- Abbreviate $f_n = f(x_n)$ and $g_n = \nabla f(x_n)$
- Throughout talk, assume $d \geq N + 2$

- Worst-case performance of \mathbf{H} :
Define $r(\mathbf{H})$ to be largest value of r s.t.

$$f_N - f_\star \leq \frac{1}{2r} \|x_0 - x_\star\|^2 \quad \forall f \in \mathcal{F}$$

- Equivalently $r(\mathbf{H}) := \min_{f \in \mathcal{F}} \frac{\frac{1}{2} \|x_0 - x_\star\|^2}{f_N - f_\star}$
- The algorithm design problem:

$$\max_{\mathbf{H}} r(\mathbf{H})$$

Classic algorithms

- N steps of gradient descent, $x_n = x_{n-1} - g_{n-1}$:

$$\mathbf{H} = \begin{bmatrix} 0 & & & & \\ 1 & 0 & & & \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \end{bmatrix} \quad \text{and} \quad r(\mathbf{H}) = 2N + 1$$

- [Nesterov 05]: N steps of Fast Gradient Method (FGM):

$$\mathbf{H} = \begin{bmatrix} 0 & & & & & \\ 1 & 0 & & & & \\ 0 & 1.28175 & 0 & & & \\ 0 & 0.122293 & 1.43404 & 0 & & \\ 0 & 0.0649454 & 0.230504 & 1.53106 & 0 & \end{bmatrix} \quad \text{and} \quad r(\mathbf{H}) \approx \frac{N^2}{4}.$$

The “Shadow Iterate” and Acceleration

Theorem. [Grimmer Shu Wang 2024c]

Let \mathbf{H} be any* N -step FSFOM. Let $r = r(\mathbf{H})$ so that

$$f_N - f_\star \leq \frac{1}{2r} \|x_0 - x_\star\|^2 \quad \forall f \in \mathcal{F}$$

We can construct a vector $v \in \mathbb{R}^{[0,N]}$ so that

$$f_N - f_\star + \frac{1}{2r} \left\| x_0 - \sum_{i=0}^N v_i g_i - x_\star \right\|^2 \leq \frac{1}{2r} \|x_0 - x_\star\|^2 \quad \forall f \in \mathcal{F}$$

- $z_{N+1} := x_0 - \sum_{i=0}^N v_i g_i$ is the shadow iterate for \mathbf{H}
- For any \mathbf{H} , $f \in \mathcal{F}$, either

$$f(x_N) - f_\star \text{ outperforms worst-case} \quad \text{or} \quad z_{n+1} \approx x_\star$$

Example

- Let $N = 0$ and $\mathbf{H} = [0]$
- This “algorithm” outputs $x_0 = 0$ on any $f \in \mathcal{F}$
- By 1-smoothness

$$f_0 - f_\star \leq \frac{1}{2} \|x_0 - x_\star\|^2$$

- Setting $v = [1]$

$$f_0 - f_\star + \frac{1}{2} \|x_0 - g_0 - x_\star\|^2 \leq \frac{1}{2} \|x_0 - x_\star\|^2$$

Recovering Nesterov's FGM I

- **Idea:** Let's inductively derive a good FSFOM
- At iteration n , have x_{n-1}, r_{n-1}

$$f_{n-1} - f_\star \leq \frac{1}{2r_{n-1}} \|x_0 - x_\star\|^2$$

- For free, also have z_n so that

$$f_{n-1} - f_\star + \frac{1}{2r_{n-1}} \|z_n - x_\star\|^2 \leq \frac{1}{2r_{n-1}} \|x_0 - x_\star\|^2$$

- Hedge between: either $f_{n-1} - f_\star$ already small or $z_n \approx x_\star$
- Let $\alpha_n \in (0, 1)$ and set

$$x_n = \alpha_n \left(x_{n-1} - g_{n-1} \right) + (1 - \alpha_n) z_n$$

Recovering Nesterov's FGM II

- **Goal:** Pick (r_n, α_n) so that

$$f(x_n) - f_\star \leq \frac{1}{2r_n} \|x_0 - x_\star\|^2$$

- **Ingredients:** r_{n-1}, x_{n-1}, z_n , and $f \in \mathcal{F}, x_\star$ satisfy

$$f(x_{n-1}) - f_\star + \frac{1}{2r_{n-1}} \|z_n - x_\star\|^2 \leq \frac{1}{2r_{n-1}} \|x_0 - x_\star\|^2$$

- **FGM:** Pick α_n to maximize worst-case r_n
for all $f \in \mathcal{F}, x_\star, x_{n-1}, z_n$ satisfying inductive hypothesis
- Explicit formula for (r_n, α_n) in terms of r_{n-1}

Algorithm. Fast Gradient Method [Nesterov 05]

- Initialize $x_0 = 0, z_1 = x_0 - g_0, r_0 = 1$

$$f_0 - f_\star + \frac{1}{2r_0} \|z_1 - x_\star\|^2 \leq \frac{1}{2r_0} \|x_0 - x_\star\|^2$$

- For $n = 1, \dots, N$, set

$$x_n = \alpha_n(x_{n-1} - g_{n-1}) + (1 - \alpha_n)z_n$$

z_{n+1} = inductively maintained

where α_n greedily maximizes r_n in

$$f_n - f_\star + \frac{1}{2r_n} \|z_{n+1} - x_\star\|^2 \leq \frac{1}{2r_n} \|x_0 - x_\star\|^2$$

- Output x_N with performance $r_N^{\text{FGM}} \approx \frac{N^2}{4}$

Recovering OGM I

- In FGM, each step starts with hypothesis

$$f_{n-1} - f_\star \text{ is small or } \|z_n - x_\star\|^2 \text{ is small,}$$

but proof *actually* uses the fact that

$$f_{n-1} - \frac{1}{2} \|g_{n-1}\|^2 - f_\star \text{ is small or } \|z_n - x_\star\|^2 \text{ is small}$$

- **Optimized Gradient Method (OGM):**

Suppose x_{n-1}, r_{n-1}, z_n satisfy

$$f_{n-1} - \frac{1}{2} \|g_{n-1}\|^2 - f_\star + \frac{1}{r_{n-1}} \|z_n - x_\star\|^2 \leq \frac{1}{r_{n-1}} \|x_0 - x_\star\|^2$$

- Pick $x_n = \alpha_n(x_{n-1} - g_{n-1}) + (1 - \alpha_n)z_n$

[Drori Teboulle 12] [Kim Fessler 16]

- **Goal:** Pick (r_n, α_n) so that

$$f(x_n) - \frac{1}{2} \|\nabla f(x_n)\|^2 - f_\star \leq \frac{1}{2r_n} \|x_0 - x_\star\|^2$$

- **Ingredients:** r_{n-1}, x_{n-1}, z_n , and $f \in \mathcal{F}, x_\star$ satisfy

$$\begin{aligned} f(x_{n-1}) - \frac{1}{2} \|\nabla f(x_{n-1})\|^2 - f_\star + \frac{1}{2r_{n-1}} \|z_n - x_\star\|^2 \\ \leq \frac{1}{2r_{n-1}} \|x_0 - x_\star\|^2 \end{aligned}$$

- **OGM:** Pick α_n to maximize worst-case r_n
for all $f \in \mathcal{F}, x_\star, x_{n-1}, z_n$ satisfying inductive hypothesis
- Explicit formula for (r_n, α_n) in terms of r_{n-1}

Algorithm. Optimized Gradient Method

- Initialize $x_0 = 0, z_1 = x_0 - 2g_0, r_0 = 2$

$$f_0 - \frac{1}{2} \|g_0\|^2 - f_\star + \frac{1}{2r_0} \|z_1 - x_\star\|^2 \leq \frac{1}{2r_0} \|x_0 - x_\star\|^2$$

- For $n = 1, \dots, N-1$, set

$$x_n = \alpha_n(x_{n-1} - g_{n-1}) + (1 - \alpha_n)z_n$$

z_{n+1} = inductively maintained

where α_n greedily maximizes r_n in

$$f_n - \frac{1}{2} \|g_n\|^2 - f_\star + \frac{1}{2r_n} \|z_{n+1} - x_\star\|^2 \leq \frac{1}{2r_n} \|x_n - x_\star\|^2$$

- Slight modification for iteration N ...
- Output x_N with performance $r_N^{\text{OGM}} \approx \frac{N^2}{2}$

Theorem. [Drori 2017]

The N -step Optimized Gradient Method (OGM) has rate

$$r_N^{\text{OGM}} \approx \frac{N^2}{2} \approx 2r_N^{\text{FGM}}$$

Furthermore, N -step OGM solves

$$\max_{\mathbf{H}} r(\mathbf{H}) = \max_{\mathbf{H}} \min_{f \in \mathcal{F}} \frac{\frac{1}{2} \|x_0 - x_\star\|^2}{f_N - f_\star}$$

Subgame Perfect Gradient Method

Can we do better than OGM?

- OGM is optimal in a uniform sense

$$f_N - f_\star \leq \frac{1}{2 \cdot r_N^{\text{OGM}}} \|x_0 - x_\star\|^2 \quad \forall f \in \mathcal{F}$$

- Can perform at worst-case rate even on “easy instances”
- Example:** $f(x) = \frac{1}{2} \|x - x_\star\|^2$ is a worst-case function!
“Correct behavior” should terminate after two steps
- Goal:** “Optimally tighten” performance of OGM

The Convex Minimization Game I

- Model convex min. as sequential zero-sum game:
- Rounds = N , Alice = Algorithm, Bob = “adversary”
 - Alice plays $x_0 = 0$ and Bob plays (f_0, g_0)
 - At round $n = 1, \dots, N$

Alice plays $x_n \in x_0 + \text{span}(\{g_0, \dots, g_{n-1}\})$

Bob plays (f_n, g_n)

- Bob plays $(x_*, f_*, g_* = 0)$, $f \in \mathcal{F}$ agreeing with history
- Alice's payoff is
$$\frac{\frac{1}{2} \|x_0 - x_*\|^2}{f_N - f_*}$$

- The OGM strategy is a Nash Equilibrium strategy
 - Alice's payoff $\geq r_N^{\text{OGM}}$
 - If Bob plays optimally, then no strategy for Alice can guarantee a payoff $> r_N^{\text{OGM}}$
- Subgame perfect notion captures idea of “optimally exploiting suboptimal play by adversary”
- OGM is not a subgame perfect Nash Equilibrium strategy
 - Consider $f(x) = \frac{1}{2} \|x - x_\star\|^2$
Alice increases payoff $r_N^{\text{OGM}} \rightarrow \infty$ by deviating at iteration 2
- The “dynamic” extension of OGM is Subgame Perfect!

- **OGM:** Given r_{n-1} , set

$x_n = \alpha_n(x_{n-1} - g_{n-1}) + (1 - \alpha_n)z_n$ to maximize r_n s.t.

$\forall f \in \mathcal{F}, x_\star, x_{n-1}, z_n :$

$$\begin{aligned} f_{n-1} - \frac{1}{2} \|g_{n-1}\|^2 - f_\star + \frac{1}{2r_{n-1}} \|z_n - x_\star\|^2 &\leq \frac{1}{2r_{n-1}} \|x_0 - x_\star\|^2 \\ \implies f_n - \frac{1}{2} \|g_n\|^2 - f_\star &\leq \frac{1}{2r_n} \|x_0 - x_\star\|^2 \end{aligned}$$

- **SPGM:** Given FO-history, set

$x_n \in x_0 + \text{span}(\{g_0, g_1, \dots, g_{n-1}\})$ to maximize r_n s.t.

$\forall f \in \mathcal{F}, x_\star :$

$$f(x_i) = f_i, \quad \nabla f(x_i) = g_i, \quad \forall i \in [0, n-1]$$

$$\implies f_n - \frac{1}{2} \|g_n\|^2 - f_\star \leq \frac{1}{2r_n} \|x_0 - x_\star\|^2$$

Can be reparameterized as a convex problem!

Algorithm. SPGM [Grimmer Shu Wang 2024b]

- Initialize $x_0 = 0, z_1 = x_0 - 2g_0, r_0 = 2$

$$f_0 - \frac{1}{2} \|g_0\|^2 - f_\star + \frac{1}{2r_0} \|z_1 - x_\star\|^2 \leq \frac{1}{2r_0} \|x_0 - x_\star\|^2$$

- For $n = 1, \dots, N-1$, set

x_n, r_n, z_{n+1} = “output” of some convex minimization problem

where x_n, z_{n+1} greedily maximizes r_n in:

$$f_n - \frac{1}{2} \|g_n\|^2 - f_\star + \frac{1}{2r_n} \|z_{n+1} - x_\star\|^2 \leq \frac{1}{2r_n} \|x_n - x_\star\|^2$$

- Slight modification for iteration N ...
- Output x_N

Theorem. [Grimmer Shu Wang 24b]

The SPGM is subgame perfect:

Suppose Alice plays according to SPGM. After iteration n ,

Alice can guarantee a payoff of at least

$$r_N(\{(x_0, f_0, g_0), (x_1, f_1, g_1), \dots, (x_n, f_n, g_n)\}) \geq r_N^{\text{OGM}}.$$

If Bob plays optimally in this subgame, then no strategy for Alice can guarantee a strictly larger payoff.

- SPGM overhead:
 - storage: $\{(x_n, f_n, g_n)\}$
 - solve convex problem in $2n$ variables optimally
- Limited-memory variant k -SPGM:
 - store k tuples $\{(x_n, f_n, g_n, r_n, z_{n+1})\}$
 - solve convex problem in $2k$ variables
 - If optimal, then this is subgame perfect for the limited memory version of the minimization game
 - Correctness depends only on feasibility (there is a known feasible point corresponding to the OGM update)

Summary/pointers

- Existence of “Shadow Iterates” **See:** Blog post on my website
- **Recovered:** **See:** [d’Aspremont Scieur Taylor 21]
 - Nesterov’s Fast Gradient Method **See:** [Nesterov 05]
 - Optimized Gradient Method **See:** [Drori Teboulle 12] [Kim Fessler 16] [Drori 17]
- **New:** Subgame Perfect Gradient Method and limited-memory k -SPGM
See: [Grimmer Shu Wang 2024b]
- Other recent work:
 - Acceleration without momentum “silver stepsize schedule”
(possible if shadow iterate $z_{n+1} \in x_n + \mathbb{R}g_n$)
See: [Altschuler Parrilo 2023a,b] [Grimmer Shu Wang 2024a,c] [Zhang Jiang 2024]

References I

Altschuler, J. M. and Parrilo, P. A. (2023a). Acceleration by stepsize hedging i: Multi-step descent and the silver stepsize schedule.

Altschuler, J. M. and Parrilo, P. A. (2023b). Acceleration by stepsize hedging ii: Silver stepsize schedule for smooth convex optimization.

Drori, Y. (2017). The exact information-based complexity of smooth convex minimization. *Journal of Complexity*, 39:1–16.

Drori, Y. and Teboulle, M. (2012). Performance of first-order methods for smooth convex minimization: a novel approach. *Mathematical Programming*, 145:451–482.

d'Aspremont, A., Scieur, D., Taylor, A., et al. (2021). Acceleration methods. *Foundations and Trends® in Optimization*, 5(1-2):1–245.

Grimmer, B., Shu, K., and Wang, A. L. (2024a). Accelerated objective gap and gradient norm convergence for gradient descent via long steps.

Grimmer, B., Shu, K., and Wang, A. L. (2024b). Beyond minimax optimality: A subgame perfect gradient method. *arXiv preprint arXiv:2412.06731*.

Grimmer, B., Shu, K., and Wang, A. L. (2024c). Composing optimized stepsize schedules for gradient descent. *arXiv preprint arXiv:2410.16249*.

References II

Kim, D. and Fessler, J. A. (2016). Optimized first-order methods for smooth convex minimization. *Math. Program.*, 159(1–2):81–107.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. *Mathematical programming*, 103(1):127–152.

Zhang, Z. and Jiang, R. (2024). Accelerated gradient descent by concatenation of stepsize schedules.