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Smooth Convex Minimization and Gradient Descent

e Want to minimize f : R? — R assuming

® fis convex
* fis1-smooth: [[Vf(z) = V[f(y)| <[z -yl Vz,y
® f has a minimizer x, with minimum value f,

Gradient descent method: Given instance (f, zo), repeatedly set
Tiy1 = x; — hV f(x;)

for a vector of fixed stepsizes h = [hg, hi, ..., hn_1]
Goal: Pick stepsizes h to minimize

Performance metric : sup %
(fso) 35 HiCo — 4|

Notation: f; = f(x;) and g; = V f(z;)
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® [Das Gupta, Van Parys, Ryu ’23]:
Numerical identification of optimal* h for

N=1,...,25

® [Altschuler, Parrilo 23a,b] [Grimmer, Shu, Wang "24a,b]

[Zhang, Jiang 2024]:

Identification of conjectured optimal h for all N

fN_f*
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® [Das Gupta, Van Parys, Ryu ’23]:
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N=1,...,25

® [Altschuler, Parrilo 23a,b] [Grimmer, Shu, Wang "24a,b]

[Zhang, Jiang 2024]:

Identification of conjectured optimal h for all N

fN_f*

(fz0) 5 llmo — 2|2

where 1.2716 = log,(1 + v/2)

® [Bok, Altschuler °24, °25] [Wang et al. *24] [Zhang et al. ’24]:
Additional extensions
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Definitions and Results
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Composable Sequences

h is f-composable with rate 7 if
p v =7 wheren:; [1h: —1)?

(f:zo) % ||ZL‘0 _1'*”2 1 +2Z7, hi B 5

h is s-composable with rate 7 if
In = f« __n _ 1 — L
sup s =5 wheren_1+zihi_H(hl 1)

(f,zo)%on—x*”Z—%HxN—g—N—m* ;

n

Example: [] is f-composable and s-composable with rate 1
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Define the s-join
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® b is s-composable with rate g

Define the s-join

aX b :=[a,u,b]
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s-composable with rate
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Composing to get f-Composable Sequences

Theorem ’ ®

Suppose
® ais s-composable with rate «

¢ b is f-composable with rate g 3 o
@
Define the f-join %o . . * R o o
arb = [a,pu,b] ° ’ ! ° °
[)
where = 1 + Y202 aﬁfgﬁw. Then a> b is Z:
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Composing to get f-Composable Sequences

Theorem 7 ®

Suppose
® ais s-composable with rate «

¢ b is f-composable with rate g 3 o
@
Define the f-join Yo o . | . . R
a>b = [a, u,b] ° z ¢ ¢ ¢
[
where =1+ 7%. Thenarcbis Zi
f-composable with rate 125
10.0
oD ﬂ = 20{5 75 °
a+ 48 + /a2 + 8af 50 °
@ @
. o= 2/g% 0% 0% 0%, 00 0% of
h is basic if it can be constructed from [], X, ° s 0w
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Applications: Silver Stepsizes

® The silver stepsize schedules of [Altschuler, Parrilo 23a,b]:
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Applications: Silver Stepsizes

® The silver stepsize schedules of [Altschuler, Parrilo 23a,b]:

h©®
h®
h®
h®

=] -
[\/f‘] — h® x h®
= [v2,2,V2] =h® xh®
[\f2f2+\f\f2\/j =h® xh®

e The sequence h(® is basic s-composable with rate n(*
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Applications: Numerically Optimal Schedules

¢ Numerically optimal stepsize schedules of [Das Gupta, Van Parys, Ryu '23]:
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¢ Numerically optimal stepsize schedules of [Das Gupta, Van Parys, Ryu '23]:

h® =] =]

M = [3/2] =[]>h®

h®  =[1.4142,1.8767 =([I%[])>n®

h®  =[1.4142,2.4142,1.5] =([I%[]))>n®

h®  =[1.4142,1.6012,3.0051,1.5] =(([I™[)X[])>n®

h®  =[1.4142,2,1.4142,3.5576,1.5] = (([] ™ []) ™ ([] X []))>h®
e Alh(™ forn =1,...,25 are basic f-composable

e Most h(™ actually ~ 1% suboptimal forn =6, ...,25

e Conjecture: the local minimizers of
min sup 7fN =)
2
b (fa0) 5 120 — i

are basic f-composable schedules
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Applications: Dynamic Short Stepsizes

¢ Dynamic short stepsize schedules:
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Applications: Dynamic Short Stepsizes

¢ Dynamic short stepsize schedules:

¢ Achieves optimal rate up to lower order terms among short step schedules:
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Applications: Dynamic Short Stepsizes

¢ Dynamic short stepsize schedules:

¢ Achieves optimal rate up to lower order terms among short step schedules:

e Compare with [Teboulle, Vaisbourd *22] [Rotaru, Glineur, Patrinos ’24]
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Applications: Optimal Basic Schedules

Optimal basic f-composable schedule of length N can be computed by DP
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Applications: Optimal Basic Schedules

Optimal basic f-composable schedule of length N can be computed by DP

h™ = min b ep"mY
m=0,...,n—1

Theorem
The optimal basic f-composable schedule of
length N has guarantee:
sup fn—fo 042311+ 0(1)
(f,zo0) % zo — x*HQ (N + 1)10g2(1+\/§)
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Applications: Optimal Basic Schedules

Optimal basic f-composable schedule of length N can be computed by DP

h™ = min b ep"mY

m=0,...,n—1

The optimal basic f-composable schedule of
length N has guarantee:

fn—fi . _042311+0(1)
(fyzo0) % ||33‘() = J,‘*HQ o (N + 1)log2(1+\/§)

0.4230

nw(N + 1)|ng(1 +2)

0.4225

0.4220

0.4215
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Summary and Pointers

e Composable stepsize schedules: s-composable, f-composable
¢ Join operations: X and > for producing new s/f-composable schedules

® Recovers: Silver stepsizes, numerically optimal schedules, dynamic short
stepsize schedules
® Optimal basic schedules

e g-composable schedules and the g-join operation <

1 2
sup 5 llgnl|
(frz0) Jo = [«

e H-duality: h is basic f-composable if and only if rev(h) is basic g-composable

Thank you for listening!
Read more: arXiv:2410.16249
Questions?
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Appendix: .
Overview of Composition Proofs
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Key lemma

h is f-composable iff fx — f. < 2 [jzo — 2,.||* and tight for Huber and quadratic
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Key lemma

h is f-composable iff fx — f. < 2 [jzo — 2,.||* and tight for Huber and quadratic

Lemma
If h is f-composable with rate n, then for any z and any ¢ € [0, 1], it holds that

fy— fo < g 2o — (1 — B)zs — t2F > + ¢ (f(2)* = £2)

where 2 = z — Vf(z) and f(2)* = f(2) — 5 [IVf(2)]”
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Key lemma

h is f-composable iff fx — f. < 2 [jzo — 2,.||* and tight for Huber and quadratic

Lemma
If h is f-composable with rate n, then for any z and any ¢ € [0, 1], it holds that

fy— fo < g 2o — (1 — B)zs — t2F > + ¢ (f(2)* = £2)
where 2t =z — Vf(2) and f(2)* = f(2) — 3|V f(2)|?

Proof strategy.
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Key lemma

h is f-composable iff fx — f. < 2 [jzo — 2,.||* and tight for Huber and quadratic

Lemma

If h is f-composable with rate n, then for any z and any ¢ € [0, 1], it holds that
f = £ < 2 [l — (1 = )z, — | +2 (F2)* - £.)

where 2 = z — Vf(z) and f(2)* = f(2) — 5 [IVf(2)]”

Proof strategy.
e PEP certificate: f, — fn + ¥ [[zo — z.l” = X, ; Aij Qi + (= 0)
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Key lemma

h is f-composable iff fx — f. < 2 [jzo — 2,.||* and tight for Huber and quadratic

Lemma

If h is f-composable with rate n, then for any z and any ¢ € [0, 1], it holds that
f = £ < 2 [l — (1 = )z, — | +2 (F2)* - £.)

where 2 = z — Vf(z) and f(2)* = f(2) — 5 [IVf(2)]”

Proof strategy.
e PEP certificate: f, — fn + ¥ [[zo — z.l” = X, ; Aij Qi + (= 0)
¢ Certificate has some structure because Huber is tight
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Key lemma

h is f-composable iff fx — f. < 2 [jzo — 2,.||* and tight for Huber and quadratic

Lemma

If h is f-composable with rate n, then for any z and any ¢ € [0, 1], it holds that
f = £ < 2 [l — (1 = )z, — | +2 (F2)* - £.)

where 2 = z — Vf(z) and f(2)* = f(2) — 5 [IVf(2)]”

Proof strategy.
e PEP certificate: f, — fn + ¥ [[zo — z.l” = X, ; Aij Qi + (= 0)
¢ Certificate has some structure because Huber is tight
* Replace Q. ; with (1 —t)Q.; +tQ.; >0 O
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F-join of two sequences

® ais s-convergent with rate o
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F-join of two sequences

® ais s-convergent with rate o
® b is f-convergent with rate
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F-join of two sequences

® ais s-convergent with rate o

® b is f-convergent with rate
e Construct h = [a, i, b]
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F-join of two sequences

® ais s-convergent with rate o

® b is f-convergent with rate
e Construct h = [a, i, b]

xo IS given
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F-join of two sequences

® ais s-convergent with rate o

® b is f-convergent with rate
e Construct h = [a, i, b]

xo IS given

Ti41 = Ty — Q394
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F-join of two sequences

® ais s-convergent with rate o
® b is f-convergent with rate
e Construct h = [a, i, b]
xo IS given
Ti41 = Tj — Q395

TM =TM-1—aM-19M -1
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F-join of two sequences

® ais s-convergent with rate o
® b is f-convergent with rate
e Construct h = [a, i, b]
xo IS given
Ti41 = Tj — Q395

TM =TM-1—aM-19M -1
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F-join of two sequences

® ais s-convergent with rate o
® b is f-convergent with rate
e Construct h = [a, i, b]
xo IS given
Ti41 = Tj — Q395

TM =TM-1—aM-19M -1

Grimmer, Shu, Wang

Yo =Tm — HIM
Yi+r1 = Yi — bil;
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F-join of two sequences

® ais s-convergent with rate o
® b is f-convergent with rate
e Construct h = [a, i, b]
xo IS given
Ti41 = Tj — Q395

TM =TM-1—aM-19M -1

Grimmer, Shu, Wang

Yo =TM — HgMm
Yi+1 = Yi — bil;
YN =YN—1 —bn_1fn_1
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F-join of two sequences

® ais s-convergent with rate o

® b is f-convergent with rate
e Construct h = [a, i, b]

xo IS given
Tit1 = Ti — 3G

TM =TM-1—aM-19M -1

e Strategy:

Grimmer, Shu, Wang

Yo =TM — HgMm
Yi+1 = Yi — bil;
YN =YN—1 —bn_1fn_1
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F-join of two sequences

® ais s-convergent with rate o
® b is f-convergent with rate
e Construct h = [a, i, b]
xo IS given Yo = Tpr — UM
Tiyl = T — A;G; Yit1 = Yi — bil;
Ty =Tym-1—apM-19M—-1 YN =YN-1 —byn_1lNn_1

e Strategy:
® Use s-composable definition for a
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F-join of two sequences

® ais s-convergent with rate o

® b is f-convergent with rate
e Construct h = [a, i, b]

zo is given Yo = Tpr — UM
Tit1 = Ti — Q35 Yir1 = Yi — bil;
TM = TM—-1—aM-19M—-1 YN =YN—1 —bn_1fN_1

e Strategy:

® Use s-composable definition for a
® Use upgraded f-composable inequality for b and compare with z = =),
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Proof sketch

¢ s-composability of a:

fM_f*S

Grimmer, Shu, Wang
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2 —

gm

> lleo — 2l — 2 |
—lzo —z«||” — 5 ||z — =— — s
a\2"° * 2 1M o
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Proof sketch

¢ s-composability of a:
(6%
2 —

Slzo —zul? = 5 floa - 2L -2
Oé 2 0 * 2 M a *

fM_f*S

)

11 = &) (@nr — ) = (= O)gm* — % lgarl|* +t (far = fx)

e Key lemma applied to b with z =z,

- fo<?
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Proof sketch

¢ s-composability of a:

« 1 1
o 52 (e o2

)

e Key lemma applied to b with z =z,

t
v —fi < g 11 = &) (@nr — ) = (= O)gm* — 5 lgarl|* +t (far = fx)
Pick ¢t = 1 + a(1 — 1) so that the norm terms cancel out:
2 _1)2
fv—fos EEETD Blu=1) zo — z]|* + (expression in far — fe,Tar — v, gor)

2
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Proof sketch

¢ s-composability of a:
(6%
2 —

gm

1 5 1
— < — — — = — 5 — 1z,
P = fe s « <2 lzo — .l 2 HxM « *

e Key lemma applied to b with z =z,

v = fo € DI = 0@ = 22) = (= Dgurl = S ot P+ ¢ (s = £2)

Pick ¢t = 1 + a(1 — 1) so that the norm terms cancel out:

o?B(p—1)°
2

¢ Ask Mathematica to optimize rate:

lzo — z+||> + (expression in far — fu, Tar — Tx, gar)

fN_f*S

Grimmer, Shu, Wang Composing stepsize schedules



Proof sketch

¢ s-composability of a:

« 1 1
o 52 (e o2

)

e Key lemma applied to b with z =z,

t
v =fe < g (1 =) (ar — 22) = (u = t)gar* — 5 lgarll® + ¢ (far — f+)
Pick ¢t = 1 + a(1 — 1) so that the norm terms cancel out:
2 2
fv—fos EEETD 5%_ ) zo — z]|* + (expression in far — fe,Tar — v, gor)
¢ Ask Mathematica to optimize rate:
g1 Y@ F8af—a
4ap
2ap3

te = = . O

new rate a+4ﬁ+\/m a>f
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