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Smooth Convex Minimization and Gradient Descent

• Want to minimize f : Rd → R assuming

• f is convex
• f is 1-smooth: ∥∇f(x)−∇f(y)∥ ≤ ∥x− y∥ ∀x, y
• f has a minimizer x⋆ with minimum value f⋆

• Gradient descent method: Given instance (f, x0), repeatedly set

xi+1 = xi − hi∇f(xi)

for a vector of fixed stepsizes h = [h0, h1, . . . , hN−1]

• Goal: Pick stepsizes h to minimize

Performance metric : sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

• Notation: fi = f(xi) and gi = ∇f(xi)
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Review of Stepsize Choices: Short Stepsizes

• Per-iteration descent fi+1 < fi is guaranteed if
hi ∈ (0, 2)

• [Folklore]: If we take h = 1N , then

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

≤ 1

2N + 1

• [Drori, Teboulle ’12] [Taylor, Hendrickx, Glineur ’15]:
Performance Estimation Programming (PEP)

• [Drori, Teboulle ’12] [Rotaru, Glineur, Patrinos ’24] [Kim ’24]:
If α ∈ (0, 2) and we take h = α1N , then

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

= max

(
(α− 1)2N ,

1

1 + 2Nα

)

≈ 1

4N

f(x) = 1
2
x2

xN =
∏

i(1− hi)x0

fN−f⋆
1
2
∥x0−x⋆∥2

=
∏

i(hi − 1)2

f(x) = Huber

xN = x0 + δ
∑

i hi

fN−f⋆
1
2
∥x0−x⋆∥2

= (1 + 2
∑

i hi)
−1
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Review of Stepsize Choices: Long Stepsizes

• [Altschuler ’18] [Daccache 2019] [Eloi ’22]:
Identification of optimal h for N = 1, 2, 3

• [Das Gupta, Van Parys, Ryu ’23]:
Numerical identification of optimal∗ h for
N = 1, . . . , 25

• [Altschuler, Parrilo ’23a,b] [Grimmer, Shu, Wang ’24a,b]
[Zhang, Jiang 2024]:
Identification of conjectured optimal h for all N

sup
(f,x0)

fN − f⋆
1
2
∥x0 − x⋆∥2

= O

(
1

N1.2716

)
where 1.2716 = log2(1 +

√
2)

• [Bok, Altschuler ’24, ’25] [Wang et al. ’24] [Zhang et al. ’24]:
Additional extensions
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Definitions and Results
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Composable Sequences

Definition
h is f-composable with rate η if

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

= η where η =
1

1 + 2
∑

i hi
=

∏
i

(hi − 1)2

Definition
h is s-composable with rate η if

sup
(f,x0)

fN − f⋆

1
2 ∥x0 − x⋆∥2 − 1

2

∥∥∥xN − gN
η − x⋆

∥∥∥2 =
η

2− η
where η =

1

1 +
∑

i hi
=

∏
i

(hi − 1)

Example: [ ] is f-composable and s-composable with rate 1
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Composing to get s-Composable Sequences

Theorem
Suppose

• a is s-composable with rate α

• b is s-composable with rate β

Define the s-join
a 1 b := [a, µ,b]

where µ = 1 +

√
α2+6αβ+β2−α−β

2αβ . Then a 1 b is
s-composable with rate

α 1 β :=
2αβ

α+ β +
√
α2 + 6αβ + β2
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Composing to get f-Composable Sequences

Theorem
Suppose

• a is s-composable with rate α

• b is f-composable with rate β

Define the f-join
a ▷ b := [a, µ,b]

where µ = 1 +

√
α2+8αβ−α

4αβ . Then a ▷ b is
f-composable with rate

α ▷ β :=
2αβ

α+ 4β +
√
α2 + 8αβ

h is basic if it can be constructed from [ ], 1, ▷
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where µ = 1 +

√
α2+8αβ−α
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Applications: Silver Stepsizes

• The silver stepsize schedules of [Altschuler, Parrilo ’23a,b]:
h(0) = [ ]

= [ ]

h(1) =
[√

2
]

= h(0) 1 h(0)

h(2) =
[√

2, 2,
√
2
]

= h(1) 1 h(1)

h(3) =
[√

2, 2,
√
2, 2 +

√
2,
√
2, 2,

√
2
]

= h(2) 1 h(2)

. . .

• The sequence h(k) is basic s-composable with rate η(k) = (1 +
√
2)−k

sup
(f,x0)

f2k−1 − f⋆
1
2 ∥x0 − x⋆∥2

=
η(k)

2− η(k)
≈ 1

2(1 +
√
2)k
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Applications: Numerically Optimal Schedules

• Numerically optimal stepsize schedules of [Das Gupta, Van Parys, Ryu ’23]:
h(0) = [ ]

= [ ]

h(1) = [3/2]

= [ ] ▷ h(0)

h(2) = [1.4142, 1.8767]

= ([ ] 1 [ ]) ▷ h(0)

h(3) = [1.4142, 2.4142, 1.5]

= ([ ] 1 [ ]) ▷ h(1)

h(4) = [1.4142, 1.6012, 3.0051, 1.5]

= (([ ] 1 [ ]) 1 [ ]) ▷ h(1)

h(5) = [1.4142, 2, 1.4142, 3.5576, 1.5]

= (([ ] 1 [ ]) 1 ([ ] 1 [ ])) ▷ h(1)

. . .

• All h(n) for n = 1, . . . , 25 are basic f-composable
• Most h(n) actually ≈ 1% suboptimal for n = 6, . . . , 25

• Conjecture: the local minimizers of

min
h

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

are basic f-composable schedules
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Applications: Dynamic Short Stepsizes

• Dynamic short stepsize schedules:
h(0) = [ ]

= [ ]

h(1) = [1.4142]

= h(0) 1 [ ]

h(2) = [1.4142, 1.6012]

= h(1) 1 [ ]

h(3) = [1.4142, 1.6012, 1.7022]

= h(2) 1 [ ]

h(4) = [1.4142, 1.6012, 1.7022, 1.7642]

= h(3) 1 [ ]

. . .

• Achieves optimal rate up to lower order terms among short step schedules:

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

≈ 1

4N

• Compare with [Teboulle, Vaisbourd ’22] [Rotaru, Glineur, Patrinos ’24]

Grimmer, Shu, Wang Composing stepsize schedules 11 / 14



Applications: Dynamic Short Stepsizes

• Dynamic short stepsize schedules:
h(0) = [ ] = [ ]

h(1) = [1.4142] = h(0) 1 [ ]

h(2) = [1.4142, 1.6012] = h(1) 1 [ ]

h(3) = [1.4142, 1.6012, 1.7022] = h(2) 1 [ ]

h(4) = [1.4142, 1.6012, 1.7022, 1.7642] = h(3) 1 [ ]

. . .

• Achieves optimal rate up to lower order terms among short step schedules:

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

≈ 1

4N

• Compare with [Teboulle, Vaisbourd ’22] [Rotaru, Glineur, Patrinos ’24]

Grimmer, Shu, Wang Composing stepsize schedules 11 / 14



Applications: Dynamic Short Stepsizes

• Dynamic short stepsize schedules:
h(0) = [ ] = [ ]

h(1) = [1.4142] = h(0) 1 [ ]

h(2) = [1.4142, 1.6012] = h(1) 1 [ ]

h(3) = [1.4142, 1.6012, 1.7022] = h(2) 1 [ ]

h(4) = [1.4142, 1.6012, 1.7022, 1.7642] = h(3) 1 [ ]

. . .

• Achieves optimal rate up to lower order terms among short step schedules:

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

≈ 1

4N

• Compare with [Teboulle, Vaisbourd ’22] [Rotaru, Glineur, Patrinos ’24]

Grimmer, Shu, Wang Composing stepsize schedules 11 / 14



Applications: Dynamic Short Stepsizes

• Dynamic short stepsize schedules:
h(0) = [ ] = [ ]

h(1) = [1.4142] = h(0) 1 [ ]

h(2) = [1.4142, 1.6012] = h(1) 1 [ ]

h(3) = [1.4142, 1.6012, 1.7022] = h(2) 1 [ ]

h(4) = [1.4142, 1.6012, 1.7022, 1.7642] = h(3) 1 [ ]

. . .

• Achieves optimal rate up to lower order terms among short step schedules:

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

≈ 1

4N

• Compare with [Teboulle, Vaisbourd ’22] [Rotaru, Glineur, Patrinos ’24]

Grimmer, Shu, Wang Composing stepsize schedules 11 / 14



Applications: Optimal Basic Schedules

Optimal basic f-composable schedule of length N can be computed by DP

h
(n)
f = min

m=0,...,n−1
h
(m)
s ▷ h

(n−m−1)
f

Theorem
The optimal basic f-composable schedule of
length N has guarantee:

sup
(f,x0)

fN − f⋆
1
2 ∥x0 − x⋆∥2

≤ 0.42311 + o(1)

(N + 1)log2(1+
√
2)
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Summary and Pointers
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Summary and Pointers

• Composable stepsize schedules: s-composable, f-composable

• Join operations: 1 and ▷ for producing new s/f-composable schedules

• Recovers: Silver stepsizes, numerically optimal schedules, dynamic short
stepsize schedules

• Optimal basic schedules

• g-composable schedules and the g-join operation ◁

sup
(f,x0)

1
2 ∥gN∥2

f0 − f⋆

• H-duality: h is basic f-composable if and only if rev(h) is basic g-composable

Thank you for listening!
Read more: arXiv:2410.16249

Questions?
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Appendix:
Overview of Composition Proofs
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Key lemma

h is f-composable iff fN − f⋆ ≤ η
2 ∥x0 − x⋆∥2 and tight for Huber and quadratic

Lemma
If h is f-composable with rate η, then for any z and any t ∈ [0, 1], it holds that

fN − f⋆ ≤ η

2

∥∥x0 − (1− t)x⋆ − tz+
∥∥2 + t

(
f(z)+ − f⋆

)
where z+ = z −∇f(z) and f(z)+ = f(z)− 1

2 ∥∇f(z)∥2

Proof strategy.
• PEP certificate: f⋆ − fN + η

2 ∥x0 − x⋆∥2 =
∑

i,j λi,jQi,j + (⪰ 0)

• Certificate has some structure because Huber is tight
• Replace Q⋆,j with (1− t)Q⋆,j + tQz,j ≥ 0
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where z+ = z −∇f(z) and f(z)+ = f(z)− 1

2 ∥∇f(z)∥2

Proof strategy.
• PEP certificate: f⋆ − fN + η

2 ∥x0 − x⋆∥2 =
∑

i,j λi,jQi,j + (⪰ 0)

• Certificate has some structure because Huber is tight

• Replace Q⋆,j with (1− t)Q⋆,j + tQz,j ≥ 0
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F-join of two sequences

• a is s-convergent with rate α

• b is f-convergent with rate β

• Construct h = [a, µ,b]

x0 is given y0 = xM − µgM

xi+1 = xi − aigi yi+1 = yi − biℓi

xM = xM−1 − aM−1gM−1 yN = yN−1 − bN−1ℓN−1

• Strategy:

• Use s-composable definition for a
• Use upgraded f-composable inequality for b and compare with z = xM
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Proof sketch

• s-composability of a:

fM − f⋆ ≤ α

2− α

(
1

2
∥x0 − x⋆∥2 −

1

2

∥∥∥xM − gM
α

− x⋆

∥∥∥2
)

• Key lemma applied to b with z = xM

fN − f⋆ ≤ β

2
∥(1− t)(xM − x⋆)− (µ− t)gM∥2 − t

2
∥gM∥2 + t (fM − f⋆)

Pick t = 1 + α(1− µ) so that the norm terms cancel out:

fN − f⋆ ≤ α2β(µ− 1)2

2
∥x0 − x⋆∥2 + (expression in fM − f⋆, xM − x⋆, gM )

• Ask Mathematica to optimize rate:

µ = 1 +

√
α2 + 8αβ − α

4αβ

new rate =
2αβ

α+ 4β +
√

α2 + 8αβ
= α ▷ β.
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