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Talk Outline

e Game theoretic view of smooth convex optimization
e Optimized Gradient Method (OGM)

® Algorithm structure, guarantees
* Maximin optimal strategy

e Subgame Perfect Gradient Method (SPGM)
® Subgame perfect strategy

[Drori Teboulle 12] [Kim Fessler 16] [Grimmer Shu 24]
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Game Theoretic View of
Smooth Convex Optimization

Alex L. Wang Subgame Perfect Smooth Convex Optimization 3/28



Smooth Convex Optimization

¢ Task: Solve min f(x)
z€R4
¢ A priori, we know

* fisl-smooth: [Vf(z) - Vf(y)| <z -yl Va,y
® fis convex
® f has a minimizer

® | et F be the set of all instances
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Algorithms for Smooth Convex Optimization

¢ Black-box model of optimization f € F
¢ First-order oracle: x — (f(x), Vf(x))
Algorithm. N-query first-order method
® Forn=0,...,N:
. Ty, € span{go, ..., Gn—1}

® Query first-order oracle

fn = f(xn) gn = Vf(xn)
® QOutput x
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The Convex Optimization Game v1

° (algorithm), Bob (oracle),
N number of rounds

e Bob secretly chooses f € F with (z,, f)
e Roundn=0,...,N

. chooses x,, € span{go,...,gn_1} .-'.-:'.";'.":,'-"
* Bob returns f, = f(z,) and g, = Vf(zy) " (fry Gn)—
2
* Bob pays 7“”;(;_7”;*” f

e.g., payoff = $1000 means
f@n) = fo = 1055 120 — 24|

(¥
=
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The convex optimization game v2

. (algorithm), Bob (oracle), S
N number of rounds (fr: n)
e Roundn=0,...,N
4 chooses x,, € span{gg,...,gn—1}

® Bob returns (f,,g.) € R x R?
Bob specifies f € F with (z,, fi)

f(z;)=f; and Vf(z;)=g; forallie[0,N]

lzo—a+ |2

e Bob pays T

= 2,
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Classic (textbook) examples

e Gradientdescent: =, = 2 | =2, 1 — gn1
Forall f € F,

lzo — .|I”

flax) = f(@) < 155

can guarantee payoff > 4N + 2

e Fast Gradient Method: =z, =z, ; + (momentum)
For all f € F,

flan) = fle) € =

can guarantee payoff > (N + 1)%/2

[Nesterov 83]
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The Optimized Gradient Method

[Drori Teboulle 12], [Kim, Fessler 16]
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OGM initialization

e OGM maintains a pair of points in each iteration
(z0,20), ..., (zn, 25) € R x R?
e Performance stated interms of ry, ..., 7v € R

Algorithm. OGM
Lemma.

e |nitialization
OGM’s initialization satisfies

C xo=0and o =2
* Query (fo,90) 210(f(xg) — fu) + 120 — zull” < [lwo — 2|
o 20 = To — 290

e Forn=1,...,N

i.e., either f(zd) ~ f. or 20 ~ z,

[Kim Fessler 16]
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OGM induction

Lemma.
Suppose (z,z,7) and f € F satisfy

27(F(2") = £) + Iz = 2l < o — .
Then,

# = some convex combination of ™ and z
satisfy

27 (F(@F) = fo) + || 2 = 6V (@) —a||” < |0 — 2

z
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The Optimized Gradient Method

Algorithm. Optimized Gradient Method
o xo = 0, 70 = 2, query (fo, go), 20 = To — 290"
2r0(f(2) — f) + 20 — 24l < [lwo — 2.

e Forn=1,...,N -1

O tO (xn—lv Zn—1, 7_77,—1) to get (iL'n, Tn, 5n)
® Reveal (f,,9n)
® Zn = Zpn—1 — 6ngn

2 (f(@d) — 1) + 120 — 2:1® < ||lzo — 24 )|°

¢ Slight modification for iteration NV ...
e Qutput zn

[Kim Fessler 16]
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Optimality of OGM

For any f € F, the output 2y of OGM If d > N + 2, there exists f € F so that
satisfies the output zy for any FOM satisfies
1 2 1
— < — — 2, _ L _ 2
flzn) = fi < S w0 — @l fl@n) = fo> . lzo — ||
Using the OGM strategy, Alice can No strategy for Alice can guarantee payoff
guarantee payoff > 27y > 27N

® 27y ~ N? is faster than Nesterov’'s FGM by ~ 2
e OGM is maximin optimal!

max min  (Alice’s payoff)
Alice’s strategy Bob’s strategy

[Kim Fessler 16] [Drori 17]
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Maximin Optimal Strategies vs.
Subgame Perfect Strategies
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The Seminar Pizza Line Game

e Bob and Alice are in line to grab pizza

® There are 6 slices remaining

e Bob goes first and may take b < 3 slices

e Alice goes second and may take a < 6 — b slices
e Alice’s payoff = a and Bob’s payoff = b

e Silly strategy: Alice takes a = 3 slices

® This strategy guarantees a > 3
* No strategy for Alice can guarantee a > 3

¢ The silly strategy is maximin optimal
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Subgame Perfect Strategies

¢ |n a sequential game, should demand a subgame perfect strategy

* A subgame is the remainder of game after some actions have been fixed

¢ Can identify subgame withwith sequence of committed actions
® In the seminar pizza line game:

* {}
e (b=0},...,{b=3}
e A strategy for is subgame perfect if for every subgame:
's payoff in subgame = max 's payoff in subgame)
’s remaining actions
* The only subgame perfect strategy for isa=6->
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OGM is NOT Subgame Perfect

Consider f(z) = (x — 1)?/2
This is a worst-case function for OGM:
1
Fan) = fuo= = llmo —

27N

At iteration n = 2, is in the subgame

{(‘TO? f07g0) = (O, ]-/27 —1)7
(21, f1,91) = (1.618,0.191,0.618) }

In this subgame, it is possible to guarantee
an infinite payoff:

— — _ R
TN =IN-1 ="' '+"=T2=7Tq
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Why Does Subgame Perfect Matter?

e Traditional maximin view assumes an
adversarial oracle

¢ |n reality, function is fixed and there is no
adversary

(fn>gn) \

e We want to exploit any suboptimal play by

oracle, while guarding against possible
adversarial play (by chance)

e Numerical evidence
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Subgame Perfect Gradient Method

[Grimmer Shu 24]
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The Subgame Perfect Gradient Method

Algorithm. Subgame Perfect Gradient Method
O zo = 0, 10 = 2, query (fo, go), zp = o — 29o:
2r0(f(2) — f) + 20 — 24l < [lwo — 2.

e Forn=1,...,N -1
[ ) to get (7, z, 7) so that

27(F(E) = fo) + 117 — 2] < w0 — =]

* to (z,2,7) to get (zn, 7, 0n)
® Reveal (f,,9n)
o Zn = Zn—1 — 5ngn

27 (f(@}) = fi) + |70 = 2ull® < lloo — z.|®
¢ Slight modification for iteration NV, Output z
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SPGM Dynamically Reoptimizes Inductive Hypothesis

e At round n, we have observed

H= {(.T(), angO)a B (.’L‘n_l, fn—hgn—l)}
and know

feFH::{fef: flzi)=fi ¥i€[0,n—1] }

Vf({l,‘l) =g; Vi€ [O,Tl — 1]
e Goal: find (z, z, 7) to solve

max {7 2(fEY) ~ £+ IF - wl® < e — P VS € Fu

Z,2€Rd, 7€R

® Nonconvex, nonsmooth, infinite dimensional problem

e After reformulations, this becomes a second-order cone program
(dual strictly feasible, strong duality, primal bounded)
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Optimality of SPGM

Let 0 < n < N and suppose SPGMisina Let0<n <N and suppose d > N + 2.
subgame Consider a subgame

H= {(x()a f0790)7 ) (fl?n_l, fn—hgn—l)}
H= {($07 fo, gO)a ceey (1'71—17 fn—lagn—l)} encountered by SPGM.

The output z of N —n + 1 additional There exists f € F3 so that the output of
iterations of SPGM satisfies any FOM for the subgame satisfies
1 2 1
—fi < ————||lzo — z« — - ek
flzn) — fi < 57w D) |z | flan) = fo> Ty lzo — ||

e SPGM is subgame perfect!

[Grimmer Shu Wang 24]
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Numerical Results

Alex L. Wang Subgame Perfect Smooth Convex Optimization 23/28



Experiments

® Regularized regression problems

1 2
— |Az — b
Az~ bl + o el

1 d
f@) = — Az = b3+ ha(lail) =

=1

¢ Regularized logistic regression problems

1 — 1
fla)=— ;logu +exp(b; - af)) + o |3

e Combination of simulated data and real data (LIBSVM)
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Results |

Fraction of instances solved: f(z,) — fi < {1073,1076,107%} - 1 ||lzg — a|?
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Results Il

¢ Value of 7 (#) over course of algorithm
e Alice’s payoff is > 275(H) where

H= {(xovf()agO)a R (mn—lyfn—lagn—l)}
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Summary
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Summary + Pointers

e Optimized Gradient Method (OGM) is maximin optimal
e Subgame perfect vs. Maximin optimal
e Subgame Perfect Gradient Method (SPGM) is subgame perfect
e See paper: limited-memory variants of SPGM
e Upcoming work:
® Subgame perfect methods for convex nonsmooth optimization

[Grimmer Shu forthcoming]
® Adaptive variants of SPGM [Luner Grimmer forthcoming]

https://arxiv.org/abs/2412.06731

Thank you for listening. Questions?
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