
Subgame Perfect Algorithms for
Smooth Convex Optimization

Alex L. Wang, Daniels School of Business, Purdue University

Based on joint work with: Benjamin Grimmer, Kevin Shu

Alex L. Wang Subgame Perfect Smooth Convex Optimization 1 / 28



Talk Outline

• Game theoretic view of smooth convex optimization
• Optimized Gradient Method (OGM)

• Algorithm structure, guarantees
• Maximin optimal strategy

• Subgame Perfect Gradient Method (SPGM)
• Subgame perfect strategy

[Drori Teboulle 12] [Kim Fessler 16] [Grimmer Shu Wang 24]
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Game Theoretic View of
Smooth Convex Optimization

Alex L. Wang Subgame Perfect Smooth Convex Optimization 3 / 28



Smooth Convex Optimization

• Task: Solve min
x∈Rd

f(x)

• A priori, we know
• f is 1-smooth: ∥∇f(x)−∇f(y)∥ ≤ ∥x− y∥ ∀x, y
• f is convex
• f has a minimizer

• Let F be the set of all instances
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Algorithms for Smooth Convex Optimization

• Black-box model of optimization f ∈ F
• First-order oracle: x 7→ (f(x),∇f(x))

Algorithm. N -query first-order method
• For n = 0, . . . , N :

• Choose xn ∈ span {g0, . . . , gn−1}
• Query first-order oracle

fn = f(xn) gn = ∇f(xn)

• Output xN
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The Convex Optimization Game v1

• Alice (algorithm), Bob (oracle),
N number of rounds

• Bob secretly chooses f ∈ F with (x⋆, f⋆)

• Round n = 0, . . . , N
• Alice chooses xn ∈ span {g0, . . . , gn−1}
• Bob returns fn = f(xn) and gn = ∇f(xn)

• Bob pays Alice ∥x0−x⋆∥2
fN−f⋆

e.g., payoff = $1000 means
f(xN )− f⋆ =

1
1000 ∥x0 − x⋆∥2

xn

(fn, gn)

f

F
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The convex optimization game v2

• Alice (algorithm), Bob (oracle),
N number of rounds

• Round n = 0, . . . , N
• Alice chooses xn ∈ span {g0, . . . , gn−1}
• Bob returns (fn, gn) ∈ R× Rd

• Bob specifies f ∈ F with (x⋆, f⋆)

f(xi) = fi and ∇f(xi) = gi for all i ∈ [0, N ]

• Bob pays Alice ∥x0−x⋆∥2
fN−f⋆

xn

(fn, gn)

F

F
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Classic (textbook) examples

• Gradient descent: xn = x+n−1 := xn−1 − gn−1

For all f ∈ F ,

f(xN )− f(x⋆) ≤
1

4N + 2
∥x0 − x⋆∥2

Alice can guarantee payoff ≥ 4N + 2

• Fast Gradient Method: xn = x+n−1 + (momentum)
For all f ∈ F ,

f(xN )− f(x⋆) ≤
2

(N + 1)2
∥x0 − x⋆∥2

Alice can guarantee payoff ≥ (N + 1)2/2

[Nesterov 83]
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The Optimized Gradient Method

[Drori Teboulle 12], [Kim, Fessler 16]
Alex L. Wang Subgame Perfect Smooth Convex Optimization 9 / 28



OGM initialization

• OGM maintains a pair of points in each iteration
(x0, z0), . . . , (xN , zN ) ∈ Rd × Rd

• Performance stated in terms of τ0, . . . , τN ∈ R

Algorithm. OGM

• Initialization
• Define x0 = 0 and τ0 = 2
• Query (f0, g0)
• Define z0 = x0 − 2g0

• For n = 1, . . . , N
• . . .

Lemma.
OGM’s initialization satisfies

2τ0(f(x
+
0 )− f⋆) + ∥z0 − x⋆∥2 ≤ ∥x0 − x⋆∥2

i.e., either f(x+0 ) ≈ f⋆ or z0 ≈ x⋆

[Kim Fessler 16]
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OGM induction

Lemma.
Suppose (x, z, τ) and f ∈ F satisfy

2τ(f(x+)− f⋆) + ∥z − x⋆∥2 ≤ ∥x0 − x⋆∥2

Then,

x̂ = some convex combination of x+ and z

(τ̂, δ̂) = . . .

satisfy

2τ̂(f(x̂+)− f⋆) +
∥∥ z − δ̂∇f(x̂)︸ ︷︷ ︸

ẑ

−x⋆
∥∥2 ≤ ∥x0 − x⋆∥2
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The Optimized Gradient Method

Algorithm. Optimized Gradient Method

• Define x0 = 0, τ0 = 2, query (f0, g0), define z0 = x0 − 2g0:

2τ0(f(x
+
0 )− f⋆) + ∥z0 − x⋆∥2 ≤ ∥x0 − x⋆∥2

• For n = 1, . . . , N − 1
• Apply Lemma to (xn−1, zn−1, τn−1) to get (xn, τn, δn)
• Reveal (fn, gn)
• Set zn = zn−1 − δngn

2τn(f(x
+
n )− f⋆) + ∥zn − x⋆∥2 ≤ ∥x0 − x⋆∥2

• Slight modification for iteration N ...
• Output xN

[Kim Fessler 16]
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Optimality of OGM

Theorem.
For any f ∈ F , the output xN of OGM
satisfies

f(xN )− f⋆ ≤
1

2τN
∥x0 − x⋆∥2

Using the OGM strategy, Alice can
guarantee payoff ≥ 2τN

Theorem.
If d ≥ N + 2, there exists f ∈ F so that
the output xN for any FOM satisfies

f(xN )− f⋆ ≥
1

2τN
∥x0 − x⋆∥2

No strategy for Alice can guarantee payoff
> 2τN

• 2τN ≈ N2 is faster than Nesterov’s FGM by ≈ 2

• OGM is maximin optimal!

max
Alice’s strategy

min
Bob’s strategy

(Alice’s payoff)

[Kim Fessler 16] [Drori 17]
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Maximin Optimal Strategies vs.

Subgame Perfect Strategies
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The Seminar Pizza Line Game

• Bob and Alice are in line to grab pizza
• There are 6 slices remaining
• Bob goes first and may take b ≤ 3 slices
• Alice goes second and may take a ≤ 6− b slices
• Alice’s payoff = a and Bob’s payoff = b

• Silly strategy: Alice takes a = 3 slices
• This strategy guarantees a ≥ 3
• No strategy for Alice can guarantee a > 3

• The silly strategy is maximin optimal
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Subgame Perfect Strategies

• In a sequential game, should demand a subgame perfect strategy

• A subgame is the remainder of game after some actions have been fixed
• Can identify subgame withwith sequence of committed actions
• In the seminar pizza line game:

• {}
• {b = 0}, . . . , {b = 3}

• A strategy for Alice is subgame perfect if for every subgame:

Alice’s payoff in subgame = max
Alice’s remaining actions

(Alice’s payoff in subgame)

• The only subgame perfect strategy for Alice is a = 6− b
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OGM is NOT Subgame Perfect

• Consider f(x) = (x− 1)2/2

• This is a worst-case function for OGM:

f(xN )− f⋆ =
1

2τN
∥x0 − x⋆∥2

• At iteration n = 2, Alice is in the subgame{
(x0, f0, g0) = (0, 1/2,−1),

(x1, f1, g1) = (1.618, 0.191, 0.618)
}

• In this subgame, it is possible to guarantee
an infinite payoff:

xN = xN−1 = · · · = x2 = x+1

x0

x1
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Why Does Subgame Perfect Matter?

• Traditional maximin view assumes an
adversarial oracle

• In reality, function is fixed and there is no
adversary

• We want to exploit any suboptimal play by
oracle, while guarding against possible
adversarial play (by chance)

• Numerical evidence

xn

(fn, gn)

F

F
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Subgame Perfect Gradient Method

[Grimmer Shu Wang 24]
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The Subgame Perfect Gradient Method

Algorithm. Subgame Perfect Gradient Method

• Define x0 = 0, τ0 = 2, query (f0, g0), define z0 = x0 − 2g0:

2τ0(f(x
+
0 )− f⋆) + ∥z0 − x⋆∥2 ≤ ∥x0 − x⋆∥2

• For n = 1, . . . , N − 1

♠ Solve a subproblem to get (x̃, z̃, τ̃) so that

2τ̃(f(x̃+)− f⋆) + ∥z̃ − x⋆∥2 ≤ ∥x0 − x⋆∥2

• Apply Lemma to (x̃, z̃, τ̃) to get (xn, τn, δn)
• Reveal (fn, gn)
• Set zn = zn−1 − δngn

2τn(f(x
+
n )− f⋆) + ∥zn − x⋆∥2 ≤ ∥x0 − x⋆∥2

• Slight modification for iteration N , Output xN
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SPGM Dynamically Reoptimizes Inductive Hypothesis

• At round n, we have observed

H = {(x0, f0, g0), . . . , (xn−1, fn−1, gn−1)}

and know

f ∈ FH :=

{
f ∈ F :

f(xi) = fi ∀i ∈ [0, n− 1]

∇f(xi) = gi ∀i ∈ [0, n− 1]

}
• Goal: find (x̃, z̃, τ̃) to solve

max
x̃,z̃∈Rd, τ̃∈R

{
τ̃ : 2τ̃(f(x̃+)− f⋆) + ∥z̃ − x⋆∥2 ≤ ∥x0 − x⋆∥2 ∀f ∈ FH

}
• Nonconvex, nonsmooth, infinite dimensional problem
• After reformulations, this becomes a second-order cone program

(dual strictly feasible, strong duality, primal bounded)
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Optimality of SPGM

Theorem.
Let 0 ≤ n ≤ N and suppose SPGM is in a
subgame

H = {(x0, f0, g0), . . . , (xn−1, fn−1, gn−1)}

The output xN of N − n+ 1 additional
iterations of SPGM satisfies

f(xN )− f⋆ ≤
1

2τN (H)
∥x0 − x⋆∥2

Theorem.
Let 0 ≤ n ≤ N and suppose d ≥ N + 2.
Consider a subgame
H = {(x0, f0, g0), . . . , (xn−1, fn−1, gn−1)}
encountered by SPGM.
There exists f ∈ FH so that the output of
any FOM for the subgame satisfies

f(xN )− f⋆ ≥
1

2τN (H)
∥x0 − x⋆∥2

• SPGM is subgame perfect!

[Grimmer Shu Wang 24]
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Numerical Results
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Experiments

• Regularized regression problems

f(x) =
1

m
∥Ax− b∥22 +

d∑
i=1

hα(|xi|) ≈
1

m
∥Ax− b∥22 + α ∥x∥1

• Regularized logistic regression problems

f(x) =
1

m

m∑
i=1

log(1 + exp(bi · a⊺i x)) +
1

2m
∥x∥22

• Combination of simulated data and real data (LIBSVM)
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Results I

Fraction of instances solved: f(xn)− f⋆ ≤
{
10−3, 10−6, 10−9

}
· 1
2 ∥x0 − x⋆∥2
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Results II

• Value of τN (H) over course of algorithm
• Alice’s payoff is ≥ 2τN (H) where

H = {(x0, f0, g0), . . . , (xn−1, fn−1, gn−1)}
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Summary
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Summary + Pointers

• Optimized Gradient Method (OGM) is maximin optimal
• Subgame perfect vs. Maximin optimal
• Subgame Perfect Gradient Method (SPGM) is subgame perfect
• See paper: limited-memory variants of SPGM
• Upcoming work:

• Subgame perfect methods for convex nonsmooth optimization
[Grimmer Shu Wang forthcoming]

• Adaptive variants of SPGM [Luner Grimmer forthcoming]

https://arxiv.org/abs/2412.06731

Thank you for listening. Questions?

Alex L. Wang Subgame Perfect Smooth Convex Optimization 28 / 28



References I

Drori, Y. (2017). The exact information-based complexity of smooth convex minimization. Journal of
Complexity, 39:1–16.

Drori, Y. and Teboulle, M. (2012). Performance of first-order methods for smooth convex minimization:
a novel approach. Mathematical Programming, 145:451–482.

Grimmer, B., Shu, K., and Wang, A. L. (2024). Beyond minimax optimality: A subgame perfect
gradient method. arXiv preprint arXiv:2412.06731.

Kim, D. and Fessler, J. A. (2016). Optimized first-order methods for smooth convex minimization.
Math. Program., 159(1–2):81–107.

Nesterov, Y. (1983). A method for solving the convex programming problem with convergence rate
O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547.

Alex L. Wang Subgame Perfect Smooth Convex Optimization 1 / 1


	Appendix
	References


